Measurements of sediments eroded by the Mackenzie River reveal the widespread export of permafrost-derived biospheric carbon that is several thousand years old, and demonstrate its burial in the Arctic Ocean, suggesting that high-latitude rivers can act as important carbon dioxide sinks.

Riverine export of particulate organic carbon (POC) to the ocean affects the atmospheric carbon inventory over a broad range of timescales. On geological timescales, the balance between sequestration of POC from the terrestrial biosphere and oxidation of rock-derived (petrogenic) organic carbon sets the magnitude of the atmospheric carbon and oxygen reservoirs. Over shorter timescales, variations in the rate of exchange between carbon reservoirs, such as soils and marine sediments, also modulate atmospheric carbon dioxide levels.

At geological time scales, the role of continental erosion in the organic carbon (OC) cycle is determined by the balance between recent OC burial and petrogenic OC oxidation. Evaluating its net effect on the concentration of carbon dioxide and dioxygen in the atmosphere requires the fate of petrogenic OC to be assessed.