The MJO modulation of sea surface chlorophyll-a (Chl) examined initially by Waliser et al. in Geophys Res Lett, (2005) is revisited with a significantly longer time-series of observations and a more systematic approach to characterizing the possible mechanisms underlying the MJO-Chl relationships. The MJO composite analysis of Chl and lead-lag correlations between Chl and other physical variables reveal regional variability of Chl and corresponding indicative temporal relationships among variables.

Grounding lines are a key indicator of ice-sheet instability, because changes in their position reflect imbalance with the surround-ing ocean and affect the flow of inland ice. Although the grounding lines of several Antarctic glaciers have retreated rapidly due to ocean-driven melting, records are too scarce to assess the scale of the imbalance. Here, we combine satellite altimeter obser-vations of ice-elevation change and measurements of ice geometry to track grounding-line movement around the entire conti-nent, tripling the coverage of previous surveys.

An attribution study has been performed to investigate the degree to which the unusually cold European winter of 2009/10 was modified by anthropogenic climate change. Two different methods have been included for the attribution: one based on large HadGEM3-A ensembles and one based on a statistical surrogate method. Both methods are evaluated by comparing simulated winter temperature means, trends, standard deviations, skewness, return periods, and 5% quantiles with observations.

Using reanalysis datasets and numerical simulations, the relationship between the stratospheric Arctic vortex (SAV) and the Pacific decadal oscillation (PDO) on decadal time scales was investigated. A significant in-phase relationship between the PDO and SAV on decadal time scales during 1950–2014 is found, that is, the North Pacific sea surface temperature (SST) cooling (warming) associated with the positive (negative) PDO phases is closely related to the strengthening (weakening) of the SAV.

The increasing awareness of the many damaging aspects of climate change has prompted research into ways of reducing and reversing the anthropogenic increase in carbon concentrations in the atmosphere. Most emission scenarios stabilizing climate at low levels, such as the 1.5 °C target as outlined by the Paris Agreement, require large-scale deployment of Bio-Energy with Carbon Capture and Storage (BECCS).

Pages