We present a 3.2 Myr record of stable isotopes and physical properties at IODP Site U1308 (reoccupation of DSDP Site 609) located within the ice-rafted detritus (IRD) belt of the North Atlantic. We compare the isotope and lithological proxies at Site U1308 with other North Atlantic records (e.g., sites 982, 607/U1313, and U1304) to reconstruct the history of orbital and millennial-scale climate variability during the Quaternary.

Original Source

Large-scale biomass plantations (BPs) are often considered a feasible and safe climate engineering proposal for extracting carbon from the atmosphere and, thereby, reducing global mean temperatures. However, the capacity of such terrestrial carbon dioxide removal (tCDR) strategies and their larger Earth system impacts remain to be comprehensively studied—even more so under higher carbon emissions and progressing climate change.

California has experienced a dry 21st century capped by severe drought from 2012 through 2015 prompting questions about hydroclimatic sensitivity to anthropogenic climate change and implications for the future. We address these questions using a Holocene lake sediment record of hydrologic change from the Sierra Nevada Mountains coupled with marine sediment records from the Pacific. These data provide evidence of a persistent relationship between past climate warming, Pacific sea surface temperature (SST) shifts and centennial to millennial episodes of California aridity.

A study published in the journal PLOS ONE reveals that teachers' climate change beliefs may influence students.

The year 1980 has often been used as a benchmark for the return of Antarctic ozone to conditions assumed to be unaffected by emissions of ozone depleting substances (ODSs), implying that anthropogenic ozone depletion in Antarctica started around 1980. Here, the extent of anthropogenically-driven Antarctic ozone depletion prior to 1980 is examined using output from transient Chemistry-Climate Model (CCM) simulations from 1960 to 2000 with prescribed changes of ozone depleting substance concentrations in conjunction with observations.

Pages