The summer of 2013 was the hottest on record in Eastern China. Severe extended heatwaves affected the most populous and economically developed part of China and caused substantial economic and societal impacts. The estimated direct economic losses from the accompanying drought alone total 59 billion RMB. Summer (June–August) mean temperature in the region has increased by 0.82 °C since reliable observations were established in the 1950s, with the five hottest summers all occurring in the twenty-first century. It is challenging to attribute extreme events to causes.

This study compares observed and model-simulated spatiotemporal patterns of changes in Chinese extreme temperatures during 1961–2007 using an optimal detection method. Four extreme indices, namely annual maximum daily maximum (TXx) and daily minimum (TNx) temperatures and annual minimum daily maximum (TXn) and daily minimum (TNn) temperatures, are studied.

Extremes of weather and climate can have devastating effects on human society and the environment. Understanding past changes in the characteristics of such events, including recent increases in the intensity of heavy precipitation events over a large part of the Northern Hemisphere land area, is critical for reliable projections of future changes.

The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming the Arctic, and fluctuations of regional fresh water inflow into the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence.

The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, the researchers find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high latitude land areas during the second half of the 20th century.