When the Moon’s shadow races across the continental United States on 21 August, researchers will be waiting — in planes, on mountaintops and at other carefully chosen vantage points along the roughly 110-kilometre-wide path of totality. Thanks to the sheer number of observers, solar physicists hope to learn more from this latest total solar eclipse than from any previous such event, and to use that knowledge to develop tools for next time.

Giant radio galaxies (GRGs) are one of the largest astrophysical sources in the Universe with an overall projected linear size of ∼0.7 Mpc or more. The last six decades of radio astronomy research has led to the detection of thousands of radio galaxies. However, only ∼300 of them can be classified as GRGs. The reasons behind their large size and rarity are unknown. We carried out a systematic search for these radio giants and found a large sample of GRGs.

Rossby waves are a type of global-scale wave that develops in planetary atmospheres, driven by the planet’s rotation. They propagate westward owing to the Coriolis force, and their characterization enables more precise forecasting of weather on Earth. Despite the massive reservoir of rotational energy available in the Sun’s interior and decades of observational investigation, their solar analogue defies unambiguous identification.

After sending a probe to Mars in 2020, China plans to explore three asteroids and land on one of them to conduct scientific research, according to a Chinese asteroid research expert.

Seven small planets whose surfaces could harbour liquid water have been spotted around a nearby dwarf star. If such a configuration is common in planetary systems, our Galaxy could be teeming with Earth-like planets.

1,300 new galaxies uncovered by one of the world's most powerful radio telescope

An international team of astronomers has announced the discovery of a new dwarf planet in our Solar System, finding a distant object beyond Neptune that circles the Sun in a spectacularly wide orbi

Astronomers have discovered the largest planet outside our solar system orbiting two stars, at a distance that would make it potentially habitable for people, scientists announced Monday.

Solar magnetism displays a host of variational timescales of which the enigmatic 11-year sunspot cycle is most prominent. Recent work has demonstrated that the sunspot cycle can be explained in terms of the intra- and extra-hemispheric interaction between the overlapping activity bands of the 22-year magnetic polarity cycle. Those activity bands appear to be driven by the rotation of the Sun’s deep interior. Here we deduce that activity band interaction can qualitatively explain the ‘Gnevyshev Gap’—a well-established feature of flare and sunspot occurrence.

Based on two detectors separated by about 3,000 km and using ultra-stable lasers, a new observatory known as the Advanced LIGO has detected gravitational waves generated by the coalescence of two black holes, that turned into a new black hole with the release of about five solar masses of energy in a few milliseconds at a distance of over a billion light years, thus confirming one of the last untested predictions of the General Theory of Relativity.