Natural CO2 releases from shallow marine hydrothermal vents are assumed to mix into the water column, and not accumulate into stratified seafloor pools. We present newly discovered shallow subsea pools located within the Santorini volcanic caldera of the Southern Aegean Sea, Greece, that accumulate CO2 emissions from geologic reservoirs. This type of hydrothermal seafloor pool, containing highly concentrated CO2, provides direct evidence of shallow benthic CO2 accumulations originating from sub-seafloor releases.

The massive Mw = 7.8 earthquake which rocked the Nepal Himalaya on 25 April 2015 is the largest to have occurred in this region in the past 81 years. This event occurred by slip on a ~150 km long and 55 km wide, shallow dipping (~5) segment of the Main Himalayan Thrust (MHT), causing the Himalaya to lurch southwestward by 4.8  1.2 m over the Indian plate. The main shock ruptured the frictionally locked segment of the MHT, initiating near the locking line and rupturing all the way updip close to its surface expression near the foothills of the Himalaya.

The northeastern part of the Indian Ocean, i.e. the Bay of Bengal (BoB) is located near some of the most complicated tectonic zones on the Earth. An earthquake of magnitude ~6.0 occurred on 21 May 2014 near the coast of Odisha. Occasional moderate to large earthquakes in BoB highlight the need to study precise hypocentre locations, and focal mechanisms to understand the cause of intraplate seismicity in BoB.

Original Source

A remote sensing and GIS based landslide susceptibility zonation (LSZ) of the Tehri reservoir rim region has been presented here. Landslide causal factors such
as land use/land cover, photo-lineaments, landslide incidences, drainage, slope, aspect, relative relief, topographic wetness index and stream power index were
derived from remote sensing data. Ancillary data included published geological map, soil map and topographic map. Correlation between factor classes and

TAIPEI – A Japanese geologist said Tuesday that a massive earthquake-generated tsunami originating in Japan and capable of affecting Taiwan is likely to occur every 1,000 years, a prediction likely

While disaster studies researchers usually view risk as a function of hazard, exposure, and vulnerability, few studies have systematically examined the relationships among the various physical and socioeconomic determinants underlying disasters, and fewer have done so through seismic risk analysis. In the context of the 1999 Chi-Chi earthquake in Taiwan, this study constructs five hypothetical models to test different determinants that affect disaster fatality at the village level, namely seismic hazard intensity, population, building fragility, demographics and socioeconomics.

SAN FRANCISCO – Three fault segments running beneath Northern California and its roughly 15 million people are overdue for a major earthquake, including one section that lies near the dams and cana

The Hawaiian Islands' location in the middle of the Pacific Ocean is threatened by tsunamis from great earthquakes in nearly all directions. Historical great earthquakes Mw > 8.5 in the last 100 years have produced large inundations and loss of life in the islands but cannot account for a substantial (≤ 600 m3) paleotsunami deposit in the Makauwahi sinkhole on the Island of Kaua‘i. Using high-resolution bathymetry and topography we model tsunami inundation of the sinkhole caused by an earthquake with a moment magnitude of Mw ~9.25 located in the eastern Aleutians.

The occurrences of moderate to large magnitude earthquakes and associated subsurface geological processes were critically examined in the backdrop of Indian plate obliquity, stress obliquity, topography, and the late Tertiary regional tectonics for understanding the evolving dynamics and kinematics in the central part of the Himalayas. The higher topographic areas are likely associated with the zones of depressions, and the lower topographic areas are found around the ridges located in the frontal part of the orogen.

Earth’s core is less dense than iron, and therefore it must contain “light elements,” such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth’s outer core. We compare the velocity and density for any composition in the (Fe–Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data.