In ancient hothouses lacking ice sheets, the origins of large, million-year (myr)-scale sea-level oscillations remain a mystery, challenging current models of sea-level change. To address this mystery, we develop a sedimentary noise model for sea-level changes that simultaneously estimates geologic time and sea level from astronomically forced marginal marine stratigraphy. The noise model involves two complementary approaches: dynamic noise after orbital tuning (DYNOT) and lag-1 autocorrelation coefficient (ρ1).

This report is designed to raise awareness of climate change related risks to port infrastructure in Asia, quantifying the potential costs to rebuild and adapt ports to climate change.

A recent documentary looks at how Bangladeshi farmers are adapting to rising sea levels.

Climate change is dialing up the pressure on species around the world.

According to the Intergovernmental Panel on Climate Change, temperatures are expected to rise between 2.5 and 10 degrees Fahrenheit over the next century.

We used a first-of-its-kind comprehensive scenario approach to evaluate both the vertical and horizontal response of tidal wetlands to projected changes in the rate of sea-level rise (SLR) across 14 estuaries along the Pacific coast of the continental United States. Throughout the U.S. Pacific region, we found that tidal wetlands are highly vulnerable to end-of-century submergence, with resulting extensive loss of habitat. Using higher-range SLR scenarios, all high and middle marsh habitats were lost, with 83% of current tidal wetlands transitioning to unvegetated habitats by 2110.

The world’s sea ice shrank to a record January low last month as the annual polar melting period expanded, experts say.

A group of researchers has used satellite data from last 25 years to show the rapid rate of sea level increase and how bad it might get by the end of this century.

Satellite altimetry has shown that global mean sea level has been rising at a rate of ∼3 ± 0.4 mm/y since 1993. Using the altimeter record coupled with careful consideration of interannual and decadal variability as well as potential instrument errors, we show that this rate is accelerating at 0.084 ± 0.025 mm/y2, which agrees well with climate model projections. If sea level continues to change at this rate and acceleration, sea-level rise by 2100 (∼65 cm) will be more than double the amount if the rate was constant at 3 mm/y.

New research by Acclimatise, C40, the Urban Climate Change Research Network (UCCRN), and Global Covenant of Mayors for Climate & Energy reveals number of cities and citizens threatened by direct and indirect climate hazards if global greenhouse gas emissions continue unchecked.

Pages