Using a global coupled biogeochemistry–climate model and a chemistry and transport model reveals that China’s present-day global radiative forcing is about ten per cent of the current global total, made up of both warming and cooling contributions; if in the future China reduces the cooling forcings, global warming could accelerate.

The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change.

More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate.

This paper analyses the terrestrial carbon balance of China during the 1980s and 1990s using biomass and soil carbon inventories extrapolated by satellite greenness measurements, ecosystem models and atmospheric inversions.