Recolonisation of soil by macrofauna (especially ants, termites and earthworms) in rehabilitated open-cut mine sites is inevitable and, in terms of habitat restoration and function, typically of great value. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration, seepage, runoff generation and soil erosion.

Biochar, a carbon-rich, porous pyrolysis product of organic residues may positively affect plant yield and can, owing to its inherent stability, promote soil carbon sequestration when amended to agricultural soils. Another possible effect of biochar is the reduction in emissions of nitrous oxide (N2O). A number of laboratory incubations have shown significantly reduced N2O emissions from soil when mixed with biochar.

Original Source

Surface coal mining in the eastern USA disturbs hundreds of hectares of land every year and removes valuable and ecologically diverse eastern deciduous forests. Reclamation involves restoring the landscape to approximate original contour, replacing the topsoil, and revegetating the site with trees and herbaceous species to a designated post-mining land use. Re-establishing an ecosystem of ecological and economic value as well as restoring soil quality on disturbed sites are the goals of land reclamation, and microbial properties of mine soils can be indicators of restoration success.

Further progress in understanding and mitigating N2O emissions from soil lies within transdisciplinary research that reaches across spatial scales and takes an ambitious look into the future.

Original Source

Tropical agroforestry has an enormous potential to sequester carbon while simultaneously producing agricultural yields and tree products. The amount of soil organic carbon (SOC) sequestered is however influenced by the type of the agroforestry system established, the soil and climatic conditions and management. In this regional scale study, we utilized a chronosequence approach to investigate how SOC stocks changed when the original forests are converted to agriculture, and then subsequently to four different agroforestry systems (AFSs): homegarden, coffee, coconut and mango.

Pages