Biological soil crusts (biocrusts) are predicted to be sensitive to the increased temperature and altered precipitation associated with climate change. We assessed the effects of these factors on soil carbon dioxide (CO2) balance in biocrusted soils using a sequence of manipulations over a 9-year period. We warmed biocrusted soils by 2 and, later, by 4 ◦C to better capture updated forecasts of future temperature at a site on the Colorado Plateau, USA.

A new generation of an Earth system model now includes a number of land-surface processes directly relevant to analyzing potential impacts of climate change. This

Water masses can become undersaturated with oxygen when natural processes alone or in combination with anthropogenic processes produce enough organic carbon that is aerobically decomposed faster than the rate of oxygen reaeration. The dominant natural processes usually involved are photosynthetic carbon production and microbial respiration. The re-supply rate is indirectly related to its isolation from the surface layer.