Debris flows are one of the natural disasters that frequently occur in mountain areas, usually accompanied by serious loss of lives and properties. One of the most used approaches to mitigate the risk associated to debris flows is the implementation of early warning systems based on well calibrated rainfall thresholds. However, many mountainous areas have little data regarding rainfall and hazards, especially in debris flow forming regions.

This study explores the uncertainty introduced in global assessments of coastal flood exposure and risk by not accounting for water level attenuation due to land–surface characteristics. We implement a range of plausible water level attenuation values in the flood module of the Dynamic Interactive Vulnerability Assessment (DIVA) modelling framework and assess the sensitivity of flood exposure and flood risk indicators to differences in attenuation rates. Results show a reduction of up to 47 % in area exposure and even larger reductions in population exposure and expected flood damages.

The operational medium-range weather forecasting based on numerical weather prediction (NWP) models are complemented by the forecast products based on ensemble prediction systems (EPSs). This change has been recognised as an essentially useful tool for medium-range forecasting and is now finding its place in forecasting the extreme events. Here we investigate extreme events (heatwaves) using a high-resolution NWP model and its ensemble models in union with the classical statistical scores to serve verification purposes.

This paper aims to extend and update the survey of extreme wave events in Ireland that was previously carried out by O'Brien et al. (2013). The original catalogue highlighted the frequency of such events dating back as far as the turn of the last ice age through to 2012. Ireland's marine territory extends far beyond its coastline and is one of the largest seabed territories in Europe. It is therefore not surprising that extreme waves have continued to occur regularly since 2012, particularly considering the severity of weather during the winters of 2013–14 and 2015–16.

This paper investigated the meteorological role of an extraordinary rain event over Artvin. Although alert messages were prepared by the Turkish State Meteorological Service on August 23 at 09:00 UTC, 11 people died and infrastructures, buildings, private property, and public goods were damaged as a result of the flash flood. It is hoped that more detailed studies will be performed on synoptic development leading to extreme summer precipitation events in the eastern Black Sea.

This study proposes the new hydrological drought index, Korean Surface Water Supply Index (KSWSI), which overcomes some of the limitations in the calculation of previous SWSI applied in Korea and conducts the probabilistic drought forecasts using KSWSI. In this study, all hydrometeorological variables in the Geum River basin were investigated and appropriate variables were selected as KSWSI components for each sub-basin. And whereby only the normal distributions are applied to all drought components, probability distributions suitable for each KSWSI component were estimated.

Drought management frameworks are dependent on methods for monitoring and prediction, but quantifying the hazard alone is arguably not sufficient; the negative consequences that may arise from a lack of precipitation must also be predicted if droughts are to be better managed. However, the link between drought intensity, expressed by some hydro-meteorological indicator, and the occurrence of drought impacts has only recently begun to be addressed. One challenge is the paucity of information on ecological and socio-economic consequences of drought.

Vulnerability to groundwater pollution from Senegal basin was studied by two different but complementary methods: the DRASTIC method (which evaluates the intrinsic vulnerability) and the fuzzy method (which assesses the specific vulnerability taking into account continuity of the parameters). The validation of this application has been tested by comparing the membership in groundwater and distribution of different classes of vulnerabilities established as well as the nitrate distribution in the study area.

Flooding is assessed as the most important natural hazard in Europe, causing thousands of deaths, affecting millions of people and accounting for large economic losses in the past decade. Little is known about the damage processes associated with extreme rainfall in cities, due to a lack of accurate, comparable and consistent damage data. The objective of this study is to investigate the impacts of extreme rainfall on residential buildings and how affected households coped with these impacts in terms of precautionary and emergency actions.

In this contribution we identify storm time clustering in the Mediterranean Sea through a comprehensive analysis of the Allan factor. This parameter is evaluated from a long time series of wave height provided by oceanographic buoy measurements and hindcast reanalysis of the whole basin, spanning the period 1979–2014 and characterized by a horizontal resolution of about 0.1° in longitude and latitude and a temporal sampling of 1 h Mentaschi et al. (2015). The nature of the processes highlighted by the AF and the spatial distribution of the parameter are both investigated.

Pages