None

Intensification of the hydrologic cycle is a key dimension of climate change, with substantial impacts on human and natural systems1, 2. A basic measure of hydrologic cycle intensification is the increase in global-mean precipitation per unit surface warming, which varies by a factor of three in current-generation climate models (about 1–3 per cent per kelvin)3, 4, 5. Part of the uncertainty may originate from atmosphere–radiation interactions. As the climate warms, increases in shortwave absorption from atmospheric moistening will suppress the precipitation increase.

Scientists have long known that birds are feeling the heat due to climate change.

Runoff from snowmelt is regarded as a vital water source for people and ecosystems throughout the Northern Hemisphere (NH). Numerous studies point to the threat global warming poses to the timing and magnitude of snow accumulation and melt. But analyses focused on snow supply do not show where changes to snowmelt runoff are likely to present the most pressing adaptation challenges, given sub-annual patterns of human water consumption and water availability from rainfall.

In a new investigation of model projections of greenhouse gas warming impact on the Mediterranean, Zappa et al (2015 Environ. Res. Lett. 10 104012) find that the decline in basin-wide precipitation scales linearly with the strength of the 850 hPa zonal wind over North Africa. This result supports previous findings that climate change will affect the Mediterranean primarily through changing the regional atmospheric circulation. The results of this study may guide improvements of climate models to better simulate the impact of greenhouse gas warming in this critical world region.

Drought caused the most widespread damage in China, making up over 50 % of the total affected area nationwide in recent decades. In the paper, a Standardized Precipitation Index-based (SPI-based) drought risk study is conducted using historical rainfall data of 19 weather stations in Shandong province, China. Kernel density based method is adopted to carry out the risk analysis. Comparison between the bivariate Gaussian kernel density estimation (GKDE) and diffusion kernel density estimation (DKDE) are carried out to analyze the effect of drought intensity and drought duration.

Regardless of the harmful effects of burning fossil fuels on global climate other energy sources will become more important in the future because fossil fuels could run out by the early twenty-second century given the present rate of consumption. This implies that sooner or later humanity will rely heavily on renewable energy sources. Here we model the effects of an idealized large-scale application of renewable energy on global and regional climate relative to a background climate of the representative concentration pathway 2.6 scenario.

Global warming and climate change is one of the most extensively researched and discussed topical issues affecting the environment. Although there are enough historical evidence to support the theory that climate change is a natural phenomenon, many research scientists are widely in agreement that the increase in temperature in the 20th century is anthropologically related. The associated effects are the variability of rainfall and cyclonic patterns that are being observed globally.

Global environmental change has implications for the spatial and temporal distribution of water resources, but quantifying its effects remains a challenge. The impact of vegetation responses to increasing atmospheric CO2 concentrations on the hydrologic cycle is particularly poorly constrained1, 2, 3.

How rainfall arrives, in terms of its frequency, intensity and the timing and duration of rainy season, may have a large influence on rainfed agriculture. However, a thorough assessment of these effects is largely missing. This study combines a new synthetic rainfall model and two independently-validated crop models (APSIM and SARRA-H) to assess sorghum yield response to possible shifts in seasonal rainfall characteristics in West Africa.

The recent decline in Horn of Africa rainfall during the March–May “long rains” season has fomented drought and famine, threatening food security in an already vulnerable region. Some attribute this decline to anthropogenic forcing, whereas others maintain that it is a feature of internal climate variability. We show that the rate of drying in the Horn of Africa during the 20th century is unusual in the context of the last 2000 years, is synchronous with recent global and regional warming, and therefore may have an anthropogenic component.

Pages