The El Niño–Southern Oscillation (ENSO) affects the tropospheric concentrations of many trace gases. Here we investigate the ENSO influence on mercury concentrations measured in the upper troposphere during Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrumented Container flights and at ground at Cape Point, South Africa, and Mace Head, Ireland. Mercury concentrations cross-correlate with Southern Oscillation Index (SOI) with a lag of 8 ± 2 months.

Classical tidal theory predicts that the lunar gravitational semidiurnal tide (L2) should induce perturbations in relative humidity (RH). Adiabatic expansion in divergent flow in advance of the L2 pressure minimum cools the air and reduces its saturation vapor pressure, thereby increasing the rate of condensation in saturated air parcels and causing the relative humidity (RH) of unsaturated parcels to rise.

Among the tropical oceans, the western Indian Ocean hosts one of the largest concentrations of marine phytoplankton blooms in summer. Interestingly, this is also the region with the largest warming trend in sea surface temperatures in the tropics during the past century—although the contribution of such a large warming to productivity changes has remained ambiguous. Earlier studies had described the western Indian Ocean as a region with the largest increase in phytoplankton during the recent decades.

Climate projections of sea ice retreat under anthropogenic climate change at the regional scale and in summer months other than September have largely not been evaluated. Information at this level of detail is vital for future planning of safe Arctic marine activities. Here the timing of when Arctic waters will be reliably ice free across Arctic regions from June to October is presented.

Within large uncertainties in the precipitation response to greenhouse gas forcing, the Southeast Pacific drying stands out as a robust signature within climate models. A precipitation decline, of consistent direction but of larger amplitude than obtained in simulations with historical climate forcing, has been observed in central Chile since the late 1970s. To attribute the causes of this trend, we analyze local rain gauge data and contrast them to a large ensemble of both fully coupled and sea surface temperature-forced simulations.

In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade

How rainfall arrives, in terms of its frequency, intensity and the timing and duration of rainy season, may have a large influence on rainfed agriculture. However, a thorough assessment of these effects is largely missing. This study combines a new synthetic rainfall model and two independently-validated crop models (APSIM and SARRA-H) to assess sorghum yield response to possible shifts in seasonal rainfall characteristics in West Africa.

We examine the response of Arctic sea ice to projected aerosol and aerosol precursor emissions changes under the Representative Concentration Pathway (RCP) scenarios in simulations of the Canadian Earth System Model. The overall decrease in aerosol loading causes a warming, largest over the Arctic, which leads to an annual mean reduction in sea ice extent of approximately 1 million km2 over the 21st century in all RCP scenarios. This accounts for approximately 25% of the simulated reduction in sea ice extent in RCP 4.5, and 40% of the reduction in RCP 2.5.

Large amounts of methane (CH4) are known to be emitted from permafrost environments during the autumn freeze-in, but the specific soil conditions leading up to these bursts are unclear. Therefore, we used an ultrawide band ground-penetrating radar in Northeast Greenland in autumn 2009 to estimate the volumetric composition inside the soil through dielectric characterization from 200 to 3200 MHz. Our results suggest a compression of the gas reservoir during the phase transition of soil water, which is accompanied by a peak in surface CH4 emissions.

A numerical model, XBeach, calibrated and validated on field data collected at Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands, was used to examine the effects of different coral reef characteristics on potential coastal hazards caused by wave-driven flooding and how these effects may be altered by projected climate change. The results presented herein suggest that coasts fronted by relatively narrow reefs with steep fore reef slopes (~1:10 and steeper) and deeper, smoother reef flats are expected to experience the highest wave runup.

Pages