Based on high-resolution models, we investigate the change in climate extremes and impact-relevant indicators over Europe under different levels of global warming. We specifically assess the robustness of the changes and the benefits of limiting warming to 1.5°C instead of 2°C. Compared to 1.5°C world, a further 0.5°C warming results in a robust change of minimum summer temperature indices (mean, Tn10p, and Tn900p) over more than 70% of Europe. Robust changes (more than 0.5°C) in maximum temperature affect smaller areas (usually less than 20%).

Moulins permit access of surface meltwater to the glacier bed, causing basal lubrication and ice speedup in the ablation zone of western Greenland during summer. Despite the substantial impact of moulins on ice dynamics, the conditions under which they form are poorly understood. We assimilate a time series of ice surface velocity from a network of eleven Global Positioning System receivers into an ice sheet model to estimate ice sheet stresses during winter, spring, and summer in a ∼30 × 10 km region.

In this paper, satellite-based precipitation, clouds with infrared (IR) brightness temperature (BT), and tropical cyclone (TC) data from 2000 to 2015 are used to explore the relationship between precipitation, convective cloud, and TC intensity change in the Western North Pacific Ocean. An IR BT of 208 K was chosen as a threshold for deep convection based on different diurnal cycles of IR BT.

Attribution of Antarctic ozone recovery to the Montreal protocol requires evidence that (1) Antarctic chlorine levels are declining and (2) there is a reduction in ozone depletion in response to a chlorine decline. We use Aura Microwave Limb Sounder measurements of O3, HCl, and N2O to demonstrate that inorganic chlorine (Cly) from 2013 to 2016 was 223 ± 93 parts per trillion lower in the Antarctic lower stratosphere than from 2004 to 2007 and that column ozone depletion declined in response.

Present-day mass redistribution increases the total ocean mass and, on average, causes the ocean bottom to subside elastically. Therefore, barystatic sea level rise is larger than the resulting global mean geocentric sea level rise, observed by satellite altimetry and GPS-corrected tide gauges. We use realistic estimates of mass redistribution from ice mass loss and land water storage to quantify the resulting ocean bottom deformation and its effect on global and regional ocean volume change estimates.

An ecologically and economically disruptive harmful algal bloom (HAB) affected much of the northeast Pacific margin in 2015, during a prolonged oceanic warm anomaly. Caused by diatoms of the genus Pseudo-nitzschia, this HAB produced the highest particulate concentrations of the biotoxin domoic acid (DA) ever recorded in Monterey Bay, California. Bloom inception followed strong upwelling during the spring transition, which introduced nutrients and eliminated the warm anomaly locally.

There has been a progressive deepening of winter convection in the Labrador Sea since 2012, with the individual profile maximum depth exceeding 1800 m since 2014 and reaching 2100 m in 2016. This increase, during repeated positive phases of the winter North Atlantic Oscillation (NAO), resembles that during the formation of the record depth (2500 m) Labrador Sea Water (LSW) class in 1987–1994, attributed to repeated positive NAO forcing having provided critical preconditioning. The 2012–2016 LSW class is one of the deepest and most persistent ever observed (back to 1938).

This study provides evidence of substantial increases in atmospheric ammonia (NH3) concentrations (14 year) over several of the worlds major agricultural regions, using recently available retrievals from the Atmospheric Infrared Sounder (AIRS) aboard NASA’s Aqua satellite. The main sources of atmospheric NH3 are farming and animal husbandry involving reactive nitrogen ultimately derived from fertilizer use; rates of emission are also sensitive to climate change. Significant increasing trends are seen over the U.S. (2.61% yr

Augmenting previous papers about the exceptional 2011–2015 California drought, we offer new perspectives on the “snow drought” that extended into Oregon in 2014 and Washington in 2015. Over 80% of measurement sites west of 115°W experienced record low snowpack in 2015, and we estimate a return period of 400–1000 years for California’s snowpack under the questionable assumption of stationarity. Hydrologic modeling supports the conclusion that 2015 was the most severe on record by a wide margin.

Extreme large-scale North American cold events are associated with strong undulations in the tropospheric jet stream which bring cold polar air southward over the continent. Here we propose that these jet undulations are associated with the North American part of the Circumglobal Teleconnection Pattern—a pair of zonally oriented waves of zonal wave number 5 which are in zonal quadrature with each other. While the Pacific/North American pattern is associated with the first circumglobal wave pattern, North American extreme cold events are associated with the second pattern.