Significant land greening in the northern extratropical latitudes (NEL) has been documented through satellite observations during the past three decades. This enhanced vegetation growth has broad implications for surface energy, water and carbon budgets, and ecosystem services across multiple scales. Discernible human impacts on the Earth’s climate system have been revealed by using statistical frameworks of detection–attribution.

The development of crop varieties that are better suited to new climatic conditions is vital for future food production. Increases in mean temperature accelerate crop development, resulting in shorter crop durations and reduced time to accumulate biomass and yield. The process of breeding, delivery and adoption (BDA) of new maize varieties can take up to 30 years.

The rate of global mean surface temperature (GMST) warming has slowed this century despite the increasing concentrations of greenhouse gases. Climate model experiments show that this slowdown was largely driven by a negative phase of the Pacific Decadal Oscillation (PDO), with a smaller external contribution from solar variability, and volcanic and anthropogenic aerosols . The prevailing view is that this negative PDO occurred through internal variability.

Despite advances in plant functional ecology that provide a framework for predicting the responses of vegetation to environmental change, links between plant functional strategies and elevated temperatures are poorly understood. Here, we analyse the response of a species-rich grassland in northern England to two decades of temperature and rainfall manipulations in the context of the functional attributes of 21 coexisting species that represent a large array of resource-use strategies.

Droughts are intensifying across the globe, with potentially devastating implications for freshwater ecosystems. We used new network science approaches to investigate drought impacts on stream food webs and explored potential consequences for web robustness to future perturbations. The substructure of the webs was characterized by a core of richly connected species surrounded by poorly connected peripheral species.

The contributions from terrestrial water sources to sea-level rise, other than ice caps and glaciers, are highly uncertain and heavily debated. Recent assessments indicate that groundwater depletion (GWD) may become the most important positive terrestrial contribution over the next 50 years, probably equal in magnitude to the current contributions from glaciers and ice caps. However, the existing estimates assume that nearly 100% of groundwater extracted eventually ends up in the oceans.

Wildfires are an important component of terrestrial ecosystem ecology but also a major natural hazard to societies, and their frequency and spatial distribution must be better understood. At a given location, risk from wildfire is associated with the annual fraction of burned area, which is expected to increase in response to climate warming.

Parties to the United Nations Framework Convention on Climate Change (UNFCCC) have requested guidance on common greenhouse gas metrics in accounting for Nationally determined contributions (NDCs) to emission reductions. Metric choice can affect the relative emphasis placed on reductions of ‘cumulative climate pollutants’ such as carbon dioxide versus ‘short-lived climate pollutants’ (SLCPs), including methane and black carbon.

The pace of Arctic warming is about double that at lower latitudes—a robust phenomenon known as Arctic amplification. Many diverse climate processes and feedbacks cause Arctic amplification, including positive feedbacks associated with diminished sea ice. However, the precise contribution of sea-ice loss to Arctic amplification remains uncertain. Through analyses of both observations and model simulations, we show that the contribution of sea-ice loss to wintertime Arctic amplification seems to be dependent on the phase of the Pacific Decadal Oscillation (PDO).

Global environmental change is rapidly altering the dynamics of terrestrial vegetation, with consequences for the functioning of the Earth system and provision of ecosystem services1, 2. Yet how global vegetation is responding to the changing environment is not well established. Here we use three long-term satellite leaf area index (LAI) records and ten global ecosystem models to investigate four key drivers of LAI trends during 1982–2009.

Pages