Old soil carbon (C) respired to the atmosphere as a result of permafrost thaw has the potential to become a large positive feedback to climate change. As permafrost thaws, quantifying old soil contributions to ecosystem respiration (Reco) and understanding how these contributions change with warming is necessary to estimate the size of this positive feedback. We used naturally occurring C isotopes (δ13C and Δ14C) to partition Reco into plant, young soil and old soil sources in a subarctic air and soil warming experiment over three years.

A human body may be able to adapt to extremes of dry-bulb temperature (commonly referred to as simply temperature) through perspiration and associated evaporative cooling provided that the wet-bulb temperature (a combined measure of temperature and humidity or degree of ‘mugginess’) remains below a threshold of 35 °C. (ref. 1). This threshold defines a limit of survivability for a fit human under well-ventilated outdoor conditions and is lower for most people.

Global environmental change has implications for the spatial and temporal distribution of water resources, but quantifying its effects remains a challenge. The impact of vegetation responses to increasing atmospheric CO2 concentrations on the hydrologic cycle is particularly poorly constrained1, 2, 3.

Antarctica’s contribution to global sea-level rise has recently been increasing . Whether its ice discharge will become unstable and decouple from anthropogenic forcing or increase linearly with the warming of the surrounding ocean is of fundamental importance . Under unabated greenhouse-gas emissions, ocean models indicate an abrupt intrusion of warm circumpolar deep water into the cavity belowWest Antarctica’s Filchner–Ronne ice shelf within the next two centuries.

Many tropical countries are exceptionally vulnerable to changes in rainfall patterns, with floods or droughts often severely affecting human life and health, food and water supplies, ecosystems and infrastructure. There is widespread disagreement among climate model projections of how and where rainfall will change over tropical land at the regional scales relevant to impacts, with different models predicting the position of current tropical wet and dry regions to shift in different ways.

Soil fungi have pivotal ecological roles as decomposers, pathogens and symbionts. Alterations to their diversity arising from climate change could have substantial effects on ecosystems, particularly those undergoing rapid warming that contain few species. Here, we report a study using pyrosequencing to assess fungal diversity in 29 soils sampled from a 1,650 km climatic gradient through the maritime Antarctic, the most rapidly warming region in the Southern Hemisphere.

Future coastal flood risk will be strongly influenced by sea-level rise (SLR) and changes in the frequency and intensity of tropical cyclones. These two factors are generally considered independently. Here, we assess twenty-first century changes in the coastal hazard for the US East Coast using a flood index (FI) that accounts for changes in flood duration and magnitude driven by SLR and changes in power dissipation index (PDI, an integrated measure of tropical cyclone intensity, frequency and duration).

The Arctic is warming roughly twice as fast as the global average. If greenhouse gas emissions continue to increase at current rates, this warming will lead to the widespread thawing of permafrost and the release of hundreds of billions of tonnes of CO2 and billions of tonnes of CH4 into the atmosphere. So far there have been no estimates of the possible extra economic impacts from permafrost emissions of CO2 and CH4.

Landfill disposal of municipal solid waste represents one of the largest anthropogenic global methane emission sources, and recent policy approaches have targeted significant reductions of these emissions to combat climate change in the US. The efficacy of active gas collection systems in the US was examined by analysing performance data, including fire occurrence, from more than 850 landfills. A generalized linear model showed that the operating status of a landfill—open and actively receiving waste or closed—was the most significant predictor of collection system performance.

Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services.

Pages