Some animals have the remarkable capacity to acclimate across generations to projected future climate change however, the underlying molecular processes are unknown. We sequenced and assembled de novo transcriptomes of adult tropical reef fish exposed developmentally or transgenerationally to projected future ocean temperatures and correlated the resulting expression profiles with acclimated metabolic traits from the same fish. We identified 69 contigs representing 53 key genes involved in thermal acclimation of aerobic capacity.

Rapid build-up of greenhouse gases is expected to increase Earth’s mean surface temperature, with unclear effects on temperature variability. This makes understanding the direct effects of a changing climate on human health more urgent. However, the effects of prolonged exposures to variable temperatures, which are important for understanding the public health burden, are unclear.

Cutting levels of soot and other short-lived pollutants delivers tangible benefits and helps governments to build confidence that collective action on climate change is feasible. After the Paris climate meeting this December, actually reducing these pollutants will be essential to the credibility of the diplomatic process. (Opinion)

The airline industry closely monitors the midlatitude jet stream for short-term planning of flight paths and arrival times. In addition to passenger safety and on-time metrics, this is due to the acute sensitivity of airline profits to fuel cost. US carriers spent US$47 billion on jet fuel in 2011, compared with a total industry operating revenue of US$192 billion.

Heat stress at the workplace is an occupational health hazard that reduces labour productivity. Assessment of productivity loss resulting from climate change has so far been based on physiological models of heat exposure. These models suggest productivity may decrease by 11–27% by 2080 in hot regions such as Asia and the Caribbean, and globally by up to 20% in hot months by 20503. Using an approach derived from health economics, we describe self-reported estimates of work absenteeism and reductions in work performance caused by heat in Australia during 2013/2014.

There has been extensive debate about whether the sustainable use of forests (forest management aimed at producing a sustainable yield of timber or other products) results in superior climate outcomes to conservation (maintenance or enhancement of conservation values without commercial harvesting). Most of the relevant research has relied on consequential life-cycle assessment (LCA), with the results tending to show that sustainable use has lower net greenhouse-gas (GHG) emissions than conservation in the long term.

Ocean acidification negatively affects many marine species and is predicted to cause widespread changes to marine ecosystems. Similarly, freshwater ecosystems may potentially be affected by climate-change-related acidification; however, this has received far less attention. Freshwater fish represent 40% of all fishes, and salmon, which rear and spawn in freshwater, are of immense ecosystem, economical and cultural importance. In this study, we investigate the impacts of CO2-induced acidification during the development of pink salmon, in freshwater and following early seawater entry.

Coastal communities are particularly at risk from the impacts of a changing climate. Building the capacity of coastal communities to cope with and recover from a changing environment is a critical means to reducing their vulnerability. Yet, few studies have quantitatively examined adaptive capacity in such communities. Here, we build on an emerging body of research examining adaptive capacity in natural resource-dependent communities in two important ways. We examine how nine indicators of adaptive capacity vary: among segments of Kenyan fishing communities; and over time.

The air–sea transfer of heat and fresh water plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland seas, where these fluxes drive ocean convection that contributes to Denmark Strait overflow water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation.

There is a tremendous desire to attribute causes to weather and climate events that is often challenging from a physical standpoint. Headlines attributing an event solely to either human-induced climate change or natural variability can be misleading when both are invariably in play. The conventional attribution framework struggles with dynamically driven extremes because of the small signal-to-noise ratios and often uncertain nature of the forced changes. Here, we suggest that a different framing is desirable, which asks why such extremes unfold the way they do.

Pages