The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn.

In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and ‘leakage’ (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs.

The rising global temperature is predicted to expand the distribution of vector-borne diseases both in latitude and altitude. Many host communities could be affected by increased prevalence of disease, heightening the risk of extinction for many already threatened species. To understand how host communities could be affected by changing parasite distributions, we need information on the distribution of parasites in relation to variables like temperature and rainfall that are predicted to be affected by climate change.

Steady-state and dynamic gas exchange responses to ozone visible injury were investigated in an ozone-sensitive poplar clone under field conditions. The results were translated into whole tree water loss and carbon assimilation by comparing trees exposed to ambient ozone and trees treated with the ozone-protectant ethylenediurea (EDU). Steady-state stomatal conductance and photosynthesis linearly decreased with increasing ozone visible injury.

Balancing forest harvesting and restoration is critical for forest ecosystem management. In this study, we used LANDIS, a spatially explicit forest landscape model, to evaluate the effects of 21 alternative forest management initiatives which were drafted for forests in the upstream region of the Hun River in northeastern China.

Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain.

Changes in land use/land cover are a major driver of biodiversity change in the Mediterranean region. Understanding how animal populations respond to these landscape changes often requires using landscape mosaics as the unit of investigation, but few previous studies have measured both response and explanatory variables at the land mosaic level.

When faced with rapidly changing environments, wildlife species are left to adapt, disperse or disappear. Consequently, there is value in investigating the connectivity of populations of species inhabiting different environments in order to evaluate dispersal as a potential strategy for persistence in the face of climate change. Here, we begin to investigate the processes that shape genetic variation within American pika populations from the northern periphery of their range, the central Coast Mountains of British Columbia, Canada.

Apple production systems are an important component in the Chinese agricultural sector with 1.99 million ha plantation. The orchards in China could play an important role in the carbon (C) cycle of terrestrial ecosystems and contribute to C sequestration. The carbon sequestration capability in apple orchards was analyzed through identifying a set of potential assessment factors and their weighting factors determined by a field model study and literature.

Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO2 between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness?

Pages