The legacy and reach of anthropogenic influence is most clearly evidenced by its impact on the most remote and inaccessible habitats on Earth. Here we identify extraordinary levels of persistent organic pollutants in the endemic amphipod fauna from two of the deepest ocean trenches (>10,000 metres). Contaminant levels were considerably higher than documented for nearby regions of heavy industrialization, indicating bioaccumulation of anthropogenic contamination and inferring that these pollutants are pervasive across the world’s oceans and to full ocean depth.

Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat-use patterns is especially difficult for remote oceanic species.

Original Source

This special report in Bulletin of the American Meteorological Society presents assessments of how climate change may have affected the strength and likelihood of individual extreme events. 

Super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity.

Tropopause temperatures (TPTs) control the amount of stratospheric water vapour, which influences chemistry, radiation and circulation in the stratosphere, and is also an important driver of surface climate. Decadal variability and long-term trends in tropical TPTs as well as stratospheric water vapour are largely unknown. Here, we present for the first time evidence, from reanalysis and state-of-the-art climate model simulations, of a link between decadal variability in tropical TPTs and the Pacific Decadal Oscillation (PDO).

Between the winters of 2013/14 and 2014/15 during the strong North American drought, the northeast Pacific experienced the largest marine heatwave ever recorded. Here we combine observations with an ensemble of climate model simulations to show that teleconnections between the North Pacific and the weak 2014/2015 El Niño linked the atmospheric forcing patterns of this event.

Study shows radioactive material has been carried across the ocean as far as the shores of U.S.

The impact of the Indian and Atlantic oceans variability on El Niño–Southern-Oscillation (ENSO) phenomenon is investigated through sensitivity experiments with the SINTEX-F2 coupled model. For each experiment, we suppressed the sea surface temperature (SST) variability in either the Indian or Atlantic oceans by applying a strong nudging of the SST toward a SST climatology computed either from a control experiment or observations. In the sensitivity experiments where the nudging is done toward a control SST climatology, the Pacific mean state and seasonal cycle are not changed.

What would extensive fishery reform look like? In addition, what would be the benefits and trade-offs of implementing alternative approaches to fisheries management on a worldwide scale? To find out, we assembled the largest-of-its-kind database and coupled it to state-of-the-art bioeconomic models for more than 4,500 fisheries around the world. We find that, in nearly every country of the world, fishery recovery would simultaneously drive increases in food provision, fishery profits, and fish biomass in the sea.

Extreme and large-scale warming events in the ocean have been dubbed marine heatwaves,and these have been documented in both the Northern and Southern Hemispheres. This paper examinesthe intensity, duration, and frequency of positive sea surface temperature anomalies in the North Atlanticand North Pacific Oceans over the period 1950–2014 using an objective definition for marine heatwavesbased on their probability of occurrence. Small-area anomalies occur more frequently than large-areaanomalies, and this relationship can be characterized by a power law distribution.

Pages