Using mathematical models to extend knowledge of pathogen transmission and recommend optimized control efforts is dependent on the accuracy of model parameters. The rate at which susceptible individuals become infected [the force of infection (FoI)] is one of the most important parameters, but due to data constraints it is often incorrectly assumed to be constant over time. Using a bespoke method for a 12-y longitudinal dataset of serotype-specific dengue virus (DENV) infections, we estimated time-varying, serotype-specific FoIs for all four DENV serotypes.

There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density.

Nitrous oxide (N2O) is a potent greenhouse gas (GHG) that also depletes stratospheric ozone. Nitrogen (N) fertilizer rate is the best single predictor of N2O emissions from agricultural soils, which are responsible for ∼50% of the total global anthropogenic flux, but it is a relatively imprecise estimator. Accumulating evidence suggests that the emission response to increasing N input is exponential rather than linear, as assumed by Intergovernmental Panel on Climate Change methodologies. The researchers performed a metaanalysis to test the generalizability of this pattern.

The researchers investigate the balance between two mechanisms that remove carbon from the atmosphere and oceans over long timescales—weathering of terrestrial silicates and alteration of the ocean floor. We show that this balance should strongly influence atmospheric oxygen concentration, since it dictates the delivery rate of the ultimate limiting nutrient phosphorus to the ocean. Increasing solar luminosity and declining seafloor spreading rates over Proterozoic time are expected to have shifted the balance of carbon removal toward terrestrial weathering.

Thwaites Glacier is one of the West Antarctica's most prominent, rapidly evolving, and potentially unstable contributors to global sea level rise. Uncertainty in the amount and spatial pattern of geothermal flux and melting beneath this glacier is a major limitation in predicting its future behavior and sea level contribution. In this paper, a combination of radar sounding and subglacial water routing is used to show that large areas at the base of Thwaites Glacier are actively melting in response to geothermal flux consistent with rift-associated magma migration and volcanism.

Livestock-based food production is an important and pervasive way humans impact the environment. It causes about one-fifth of global greenhouse gas emissions, and is the key land user and source of water pollution by nutrient overabundance. It also competes with biodiversity, and promotes species extinctions. Empowering consumers to make choices that mitigate some of these impacts through devising and disseminating numerically sound information is thus a key socio environmental priority.

Deep-sea ecosystem processes play a key role in global functioning of the planet. These functions are largely dependent upon deep-sea biodiversity. Industrial fisheries, after the depletion of fish stocks and destruction of the marine habitats on continental shelves, are now rapidly moving deeper into the ocean interior. We show here that bottom trawling along continental slopes has a major impact on deep-sea sedimentary ecosystems, causing their degradation and infaunal depauperation.

The ocean’s role in regulating atmospheric carbon dioxide on glacial–interglacial timescales remains an unresolved issue in paleoclimatology. Many apparently independent changes in ocean physics, chemistry, and biology need to be invoked to explain the full signal. Recent understanding of the deep ocean circulation and stratification is used to demonstrate that the major changes invoked in ocean physics are dynamically linked.

This paper addresses a longstanding debate regarding the factors that limit nitrogen fixation by diazotrophic plankton—the primary source of an essential nutrient to the ocean. Multiple lines of evidence show that diazotroph growth can be locally limited by the atmospheric iron supply, but large-scale rates of N2 fixation are ultimately controlled by N deficits generated within the ocean. These findings can reconcile the conflicting observations of biologists and geochemists, while implying a new sensitivity of the marine N cycle to anthropogenic climate warming.

There is a pressing need to verify air pollutant and greenhouse gas emissions from anthropogenic fossil energy sources to enforce current and future regulations. We demonstrate the feasibility of using simultaneous remote sensing observations of column abundances of CO2, CO, and NO2 to inform and verify emission inventories.

Pages