Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations’ energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall.

Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear.

Continental ice sheets are a key component of the Earth’s climate system, but their internal dynamics need to be further studied.

For many marine species and habitats, climate change and overfishing present a double threat. To manage marine resources effectively, it is necessary to adapt management to changes in the physical environment. Simple relationships between environmental conditions and fish abundance have long been used in both fisheries and fishery management. In many cases, however, physical, biological, and human variables feed back on each other. For these systems, associations between variables can change as the system evolves in time.

n 2011, Lake Erie experienced the largest harmful algal bloom in its recorded history, with a peak intensity over three times greater than any previously observed bloom. Here we show that long-term trends in agricultural practices are consistent with increasing phosphorus loading to the western basin of the lake, and that these trends, coupled with meteorological conditions in spring 2011, produced record-breaking nutrient loads.

Prediction of monsoon changes in the coming decades is important for infrastructure planning and sustainable economic development. The decadal prediction involves both natural decadal variability and anthropogenic forcing. Hitherto, the causes of the decadal variability of Northern Hemisphere summer monsoon (NHSM) are largely unknown because the monsoons over Asia, West Africa, and North America have been studied primarily on a regional basis, which is unable to identify coherent decadal changes and the overriding controls on planetary scales.

In recent years, the Northern Hemisphere has suffered several devastating regional summer weather extremes, such as the European heat wave in 2003, the Russian heat wave and the Indus river flood in Pakistan in 2010, and the heat wave in the United States in 2011. Here, we propose a common mechanism for the generation of persistent longitudinal planetary-scale high-amplitude patterns of the atmospheric circulation in the Northern Hemisphere midlatitudes.
Those patterns—with zonal wave numbers m = 6, 7, or 8—are characteristic of the above extremes.

Recent advances in DNA-sequencing technologies now allow for in-depth characterization of the genomic stress responses of many organisms beyond model taxa. They are especially appropriate for organisms such as reef-building corals, for which dramatic declines in abundance are expected to worsen as anthropogenic climate change intensifies. Different corals differ substantially in physiological resilience to environmental stress, but the molecular mechanisms behind enhanced coral resilience remain unclear.

Tree ring–based temperature reconstructions form the scientific backbone of the current global change debate. Although some European records extend into medieval times, high-resolution, long-term, regional-scale paleoclimatic evidence is missing for the eastern part of the continent. Here we compile 545 samples of living trees and historical timbers from the greater Tatra region to reconstruct interannual to centennial-long variations in Eastern European May–June temperature back to 1040 AD. Recent anthropogenic warming exceeds the range of past natural climate variability.

Intercepting a moving object requires prediction of its future location. This complex task has been solved by dragonflies, who intercept their prey in midair with a 95% success rate. In this study, we show that a group of 16 neurons, called target-selective descending neurons (TSDNs), code a population vector that reflects the direction of the target with high accuracy and reliability across 360°. The TSDN spatial (receptive field) and temporal (latency) properties matched the area of the retina where the prey is focused and the reaction time, respectively, during predatory flights.

Pages