Due to its complex polyploidy nature (hexaploid, containing A, B and D three subgenomes) and large genome size (17 Gb), the genetic and functional analysis of bread wheat is extremely challenging.

The projected demand of maize production in India in 2050 is 4–5 times of current production. With the scope for area expansion being limited, there is need for enhancement of yield. This calls for identifying areas where huge unrealized yield potential exists. With a view to address the issue, the present study delineates homogeneous agro-climatic zones for maize production system in India taking district as a unit and using the factors production, viz. climate, soil, season and irrigated area under the crop.

This study examines the performance of the public agricultural extension system in three high growth states as well as three comparatively moderate performing states.

Plants are exposed to numerous DNA-damaging stresses including the exposure to ultraviolet (UV) component of solar radiation. They employ nucleotide excision repair to remove DNA-bulky adducts and to help eliminate UV-induced DNA lesions, so as to maintain their genome integrity and their fitness. Here, we generated genome-wide single-nucleotide resolution excision repair maps of UV-induced DNA damage in Arabidopsis at different circadian time points.

Original Source

Efforts are intended to enable regions that currently don’t grow the crop due to weather factors to start cultivation to improve food security and raise income of the country’s farmers.

Phosphate (P) is an essential macronutrient for plant growth. Roots employ adaptive mechanisms to forage for P in soil. Root hair elongation is particularly important since P is immobile. Here we report that auxin plays a critical role promoting root hair growth in Arabidopsis in response to low external P. Mutants disrupting auxin synthesis (taa1) and transport (aux1) attenuate the low P root hair response. Conversely, targeting AUX1 expression in lateral root cap and epidermal cells rescues this low P response in aux1.

This article presents a robust contact-type weed eradicator based on position sensing, digital image processing and microcontroller for weed control in row crops. The imaging system determines the weed density between the crop rows using an image analyser developed in Visual Studio Open computer vision platform for use under varying illumination levels. Graphic user interface was developed for parametric adjustments of the image analyser.

Original Source

The DREB (dehydration-responsive element binding)-type transcription factors are classified into six subgroups, named A-1 to A-6. The members of DREB A-1 and A-2 subgroups have been reported to be involved in response to various abiotic stresses. However, there were only a few genes belonging to A-3 to A-6 subgroups to be reported. In this study, we cloned a DREB A-4 subgroup gene from maize (Zea mays), ZmDREB4.1, and analyzed its characteristics and functions. ZmDREB4.1 was expressed in roots, stems, and leaves at very low levels. It was not induced by any biotic or abiotic treatment.

Drought is one of the major abiotic stresses affecting world agriculture. Breeding drought-resistant crops is one of the most important challenges for plant biologists. PYR1/PYL/RCARs, which encode the abscisic acid (ABA) receptors, play pivotal roles in ABA signaling, but how these genes function in crop drought response remains largely unknown. Here we identified 13 PYL family members in maize (ZmPYL1-13). Changes in expression of these genes under different stresses indicated that ZmPYLs played important roles in responding to multiple abiotic stresses.

Among nuts, peanut is considered as superfood and has been effective in treating malnutrition across the globe. Peanuts have more protein and 30 essential vitamins and minerals that are effective to combat acute malnutrition. Nutritive value of peanuts reveals that nearly half of the mass of the kernel is made of lipids, whereas protein and carbohydrate constitute nearly one-fifth to one-fourth of the kernel mass.

Original Source