A team of scientists have unveiled a new tree of life, a diagram outlining the evolution of all living things. The researchers found that bacteria make up most of life's branches.

The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area.

Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. 

The relationship between microbial biodiversity and soil function is an important issue in ecology, yet most studies have been performed in pristine ecosystems. Here, we assess the role of microbial diversity in ecological function and remediation strategies in diesel-contaminated soils. Soil microbial diversity was manipulated using a removal by dilution approach and microbial functions were determined using both metagenomic analyses and enzymatic assays. A shift from Proteobacteria- to Actinobacteriadominant communities was observed when species diversity was reduced.

Phylogeny is an ecologically meaningful way to classify plants and animals, as closely related taxa frequently have similar ecological characteristics, functional traits and effects on ecosystem processes. For bacteria, however, phylogeny has been argued to be an unreliable indicator of an organism’s ecology owing to evolutionary processes more common to microbes such as gene loss and lateral gene transfer, as well as convergent evolution.

Inflammatory bowel disease (IBD) has become common in the Western world, but its causes remain unclear. With the dramatic increase of cases in Asia in recent years—echoing the disease’s drastic rise in the West decades earlier—investigators have another shot at studying environmental contributors to IBD as it emerges in new populations.

Original Source

The production of biofuels from synthesis gas that utilizes a wide variety of biomass is an emerging concept, particularly with the focus on biomass-based economy. Biomass is converted to synthesis gas via gasification, which involves partial oxidation of the biomass at high temperature. This route of ethanol or liquid biofuel production has the advantage of utilizing the entire biomass, including the lignin content. Though the technology is yet to be established, there is a major breakthrough in understanding the microbial route of synthesis gas conversion.

Until now, polymyxin resistance has involved chromosomal mutations but has never been reported via horizontal gene transfer. During a routine surveillance project on antimicrobial resistance in commensal Escherichia coli from food animals in China, a major increase of colistin resistance was observed. When an E coli strain, SHP45, possessing colistin resistance that could be transferred to another strain, was isolated from a pig, we conducted further analysis of possible plasmid-mediated polymyxin resistance.

Wastewater is increasingly being used in the agricultural sector to cope with the depletion of freshwater resources as well as water stress linked to changing climate conditions. As wastewater irrigation expands, research focusing on the human health risks is critical because exposure to a range of contaminants must be weighed with the benefits to food security, nutrition and livelihoods.

Original Source

The potential negative impact for human health of veterinary use of antimicrobials in prophylaxis, metaphylaxis and growth promotion in animal husbandry was first established in the 1960s and 1970s. Determination of the molecular structure of antimicrobial resistance plasmids at that time explained the ability of antimicrobial resistance genes to disseminate among bacterial populations and elucidated the reasons for the negative effects of antimicrobials used in food animals for human health. In this issue of Environmental Microbiology, Liu et al.

Pages