Ecological scaling laws are intensively studied for their predictive power and universal nature but often fail to unify biodiversity across domains of life. Using a global-scale compilation of microbial and macrobial data, we uncover relationships of commonness and rarity that scale with abundance at similar rates for microorganisms and macroscopic plants and animals. We then show a unified scaling law that predicts the abundance of dominant species across 30 orders of magnitude to the scale of all microorganisms on Earth.

Christmas Island has been mined for rock phosphate for over 100 years, and as mining will finish in the next few decades there is a need to develop alternative economies on the island, such as high value crop production. However, to conserve the unique flora and fauna on the island, only land previously mined will be considered for this purpose. As these soils have been severely perturbed by mining, strategies to improve soil quality parameters need to be undertaken before plant based industries can be considered.

More and more infectious disease treatments fail because the causative pathogens are resistant to the drugs used for treatment. For the treatment of Neisseria gonorrhoeae, a sexually transmitted bacterium, drug resistance is a particularly big problem: there is only a single antibiotic left that is recommended for treatment. We aimed to understand how antibiotic-resistant N. gonorrhoeae spread in a sexually active host population and how the spread of resistance can be slowed.

The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides.

An analysis of bacterial community structure and antibiotic resistance gene content of interconnected human faecal and environmental samples from two low-income communities in Latin America was carried out using a combination of functional metagenomics, 16S sequencing and shotgun sequencing; resistomes across habitats are generally structured along ecological gradients, but key resistance genes can cross these boundaries, and the authors assessed the usefulness of excreta management protocols in the prevention of resistance gene dissemination.

Atmospherically transported dust from the Saharan desert provides pulses of biologically important nutrients, including iron, to ocean surface waters. The biological response to these ephemeral events is not fully known, especially among the heterotrophic microbial community. Here we use the well-characterized Vibrio genus as a model for heterotrophic bacterial response. We demonstrate that Saharan dust nutrients, deposited in tropical marine waters, can promote Vibrio bloom formation and suggest that dust-associated iron is an important driver of Vibrio population dynamics.

To maintain a symbiotic relationship between the host and its resident intestinal microbiota, appropriate mucosal T cell responses to commensal antigens must be established. Mice acquire both IgG and IgA maternally; the former has primarily been implicated in passive immunity to pathogens while the latter mediates host-commensal mutualism. Here, we report the surprising observation that mice generate T cell-independent and largely Toll-like receptor (TLR)-dependent IgG2b and IgG3 antibody responses against their gut microbiota.

Three studies investigate the bacteria in the guts of malnourished children and find that, when this microbiota is transferred into mice, supplements of certain microbes or sugars from human breast milk can restore normal growth.

Planktonic communities are shaped through a balance of local evolutionary adaptation and ecological succession driven in large part by migration. The timescales over which these processes operate are still largely unresolved. Here we use Lagrangian particle tracking and network theory to quantify the timescale over which surface currents connect different regions of the global ocean. We find that the fastest path between two patches—each randomly located anywhere in the surface ocean—is, on average, less than a decade.

A team of scientists have unveiled a new tree of life, a diagram outlining the evolution of all living things. The researchers found that bacteria make up most of life's branches.

Pages