The new rules for the Land Use, Land Use Change and Forestry sector under the Kyoto Protocol recognized the importance of Harvested Wood Products (HWP) in climate change mitigation. The researchers used the Tier 2 method proposed in the 2013 IPCC KP Supplement to estimate emissions and removals from HWP from 1990 to 2030 in EU-28 countries with three future harvest scenarios (constant historical average, and +/−20% in 2030).

The high spatio-temporal variability of aboveground biomass (AGB) in tropical forests is a large source of uncertainty in forest carbon stock estimation. Due to their spatial distribution and sampling intensity, pre-felling inventories are a potential source of ground level data that could help reduce this uncertainty at larger spatial scales. Further, exploring the factors known to influence tropical forest biomass, such as wood density and large tree density, will improve our knowledge of biomass distribution across tropical regions.

There is a need for new satellite remote sensing methods for monitoring tropical forest carbon stocks. Advanced RADAR instruments on board satellites can contribute with novel methods. RADARs can see through clouds, and furthermore, by applying stereo RADAR imaging we can measure forest height and its changes. Such height changes are related to carbon stock changes in the biomass. We here apply data from the current Tandem-X satellite mission, where two RADAR equipped satellites go in close formation providing stereo imaging.

Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand.

Forest resources supply a wide range of environmental services like mitigation of increasing levels of atmospheric carbon dioxide (CO2). As climate is changing, forest managers have added pressure to obtain forest resources by following stand management alternatives that are biologically sustainable and economically profitable. The goal of this study is to project the effect of typical forest management actions on forest C levels, given a changing climate, in the Moscow Mountain area of north-central Idaho, USA.

Trends in Alaska ecosystem carbon fluxes were predicted from inputs of monthly MODerate resolution Imaging Spectroradiometer (MODIS) vegetation index time-series combined with the NASA-CASA (Carnegie Ames Stanford Approach) carbon cycle simulation model over the past decade. CASA simulates monthly net ecosystem production (NEP) as the difference in carbon fluxes between net primary production (NPP) and soil microbial respiration (Rh).

The United Nation’s Program for Reducing Emissions from Deforestation and Forest Degradation (REDD+) aims to reduce the 20% contribution to global emissions of greenhouse gases from the forest sector, offering a financial value of the carbon stored in forests as an incentive for local communities. The pre-requisite for the setup of a participatory REDD + Program is the monitoring, reporting and verification (MRV) of baseline carbon stocks and their changes over time.

Mapping the aboveground biomass of tropical forests is essential both for implementing conservation policy and reducing uncertainties in the global carbon cycle. Two medium resolution (500 m – 1000 m) pantropical maps of vegetation biomass have been recently published, and have been widely used by sub-national and national-level activities in relation to Reducing Emissions from Deforestation and forest Degradation (REDD+).

The objective of this study was to demonstrate a new, cost-effective method to define the sustainable amounts of harvested wood products in Southeast Asian countries case studies, while avoiding degradation (net loss) of total wood carbon stocks. Satellite remote sensing from the MODIS sensor was used in the CASA (Carnegie Ames Stanford Approach) carbon cycle model to map forest production for the Southeast Asia region from 2000 to 2010.

Since sugarcane areas have increased rapidly in Brazil, the contribution of the sugarcane production, and, especially, of the sugarcane harvest system to the greenhouse gas emissions of the country is an issue of national concern.

Pages