The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions.

Groundwater is a finite resource under continuous external pressures. Current unsustainable groundwater use threatens the resilience of aquifer systems and their ability to provide a long-term water source. Groundwater storage is considered to be a factor of groundwater resilience, although the extent to which resilience can be maintained has yet to be explored in depth. In this study, we assess the limit of groundwater resilience in the world's largest groundwater systems with remote sensing observations.

Groundwater is an increasingly important water supply source globally. Understanding the amount of groundwater used versus the volume available is crucial to evaluate future water availability. We present a groundwater stress assessment to quantify the relationship between groundwater use and availability in the world's 37 largest aquifer systems. We quantify stress according to a ratio of groundwater use to availability, which we call the Renewable Groundwater Stress ratio.

Fecal bacteria are frequently found at much greater distances than would be predicted by laboratory studies, indicating that improved models that incorporate more complexity might be needed to explain the widespread contamination of many shallow aquifers. In this study, laboratory measurements of breakthrough and retained bacteria in columns of intact and repacked sediment cores from Bangladesh were fit using a two-population model with separate reversible and irreversible attachment sites that also incorporated bacterial decay rates.

Water used by irrigated crops is obtained from three sources: local precipitation contributing to soil moisture available for root water uptake (i.e., green water), irrigation water taken from rivers, lakes, reservoirs, wetlands, and renewable groundwater (i.e., blue water), and irrigation water abstracted from nonrenewable groundwater and nonlocal water resources. Here we quantify globally the amount of nonrenewable or nonsustainable groundwater abstraction to sustain current irrigation practice.

Dust aerosols can suppress rainfall by increasing the number of cloud condensation nuclei in warm clouds and affecting the surface radiation budget and boundary layer instability. The extent to which atmospheric dust may affect precipitation yields and the hydrologic cycle in semiarid regions remains poorly understood. We investigate the relationship between dust aerosols and rainfall in the West African Sahel where the dust-rainfall feedback has been speculated to contribute to sustained droughts.

The 26 December 2004 tsunami caused widespread destruction and contamination of coastal aquifers across southern Asia.