Surface coal mining in the eastern USA disturbs hundreds of hectares of land every year and removes valuable and ecologically diverse eastern deciduous forests. Reclamation involves restoring the landscape to approximate original contour, replacing the topsoil, and revegetating the site with trees and herbaceous species to a designated post-mining land use. Re-establishing an ecosystem of ecological and economic value as well as restoring soil quality on disturbed sites are the goals of land reclamation, and microbial properties of mine soils can be indicators of restoration success.

Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally.

Plant biodiversity is often correlated with ecosystem functioning in terrestrial ecosystems. However, we know little about the relative and combined effects of above- and belowground biodiversity on multiple ecosystem functions (for example, ecosystem multifunctionality, EMF) or how climate might mediate those relationships. Here we tease apart the effects of biotic and abiotic factors, both above- and belowground, on EMF on the Tibetan Plateau, China.

Further progress in understanding and mitigating N2O emissions from soil lies within transdisciplinary research that reaches across spatial scales and takes an ambitious look into the future.

Original Source

Physico-chemical properties of soil of two dominant forest types in Western Himalaya, viz. oak (Quercus leucotrichophora) and pine (Pinus roxburghii) across three soil depths, and winter and rainy seasons were analysed. In general, all the soil parameters, viz. soil moisture, water-holding capacity, organic carbon and total nitrogen decreased significantly with increasing soil depth in both the forests. However, pH did not show any trend with soil depth. All the soil physicochemical parameters were found significantly higher for oak forests compared to pine forests.

Emission of nitrous oxide (N2O) from wheat field under various management practices was measured over two years. The experimental design consisted of two winter wheat (Triticum austivum L.) varieties with three nutritional treatments and two dates of sowing. The results revealed that soil moisture and soil temperature at different depths are the key parameters influencing N2O emission. A positive increase of N2O flux was noticed with increasing soil moisture along with decreasing soil temperature at specific wheat phenophases.

Large amounts of methane (CH4) are known to be emitted from permafrost environments during the autumn freeze-in, but the specific soil conditions leading up to these bursts are unclear. Therefore, we used an ultrawide band ground-penetrating radar in Northeast Greenland in autumn 2009 to estimate the volumetric composition inside the soil through dielectric characterization from 200 to 3200 MHz. Our results suggest a compression of the gas reservoir during the phase transition of soil water, which is accompanied by a peak in surface CH4 emissions.

Tropical agroforestry has an enormous potential to sequester carbon while simultaneously producing agricultural yields and tree products. The amount of soil organic carbon (SOC) sequestered is however influenced by the type of the agroforestry system established, the soil and climatic conditions and management. In this regional scale study, we utilized a chronosequence approach to investigate how SOC stocks changed when the original forests are converted to agriculture, and then subsequently to four different agroforestry systems (AFSs): homegarden, coffee, coconut and mango.

The influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration.

Original Source

A remarkable feature of nanobubbles (<10–6 m in diameter) is their long lifetime in water. Supplying oxygen-nanobubbles (NBs) to continuously flooded paddy soil may retard the development of reductive conditions, thereby reducing the emission of methane (CH4), a potent greenhouse gas, and dissolution of arsenic, an environmental load. We tested this hypothesis by performing a pot experiment and measuring redox-related variables.

Original Source

Pages