The West Liaohe River Basin (WLRB) is one of the most sensitive areas to climate change in China and an important grain production base in the Inner Mongolia Autonomous Region of China. Groundwater depletion in this region is becoming a critical issue. Here, we used the Gravity Recovery and Climate Experiment (GRACE) satellite data and in situ well observations to estimate groundwater storage (GWS) variations and discussed the driving factors of GWS changes in the WLRB.

Original Source

Transboundary freshwater systems create inevitable linkages and interdependencies between countries. The use of shared water resources by one country will, in most cases, impact other countries sharing the same system.

Examining the spatiotemporal dynamics of meteorological variables in the context of changing climate, particularly in countries where rainfed agriculture is predominant, is vital to assess climate-induced changes and suggest feasible adaptation strategies. To that end, trend analysis has been employed to inspect the change of rainfall and temperature in northcentral Ethiopia using gridded monthly precipitation data obtained from Global Precipitation and Climate Centre (GPCC V7) and temperature data from Climate Research Unit (CRU TS 3.23) with 0.5° by 0.5° resolution from 1901 to 2014.