Enable Block: 

India can enhance its rice yields by 2.5 percent and wheat by 3.3 percent if emissions leading to generation of ground-level ozone could be mitigated, say scientists who have developed an ozone ris

The southwest monsoon is likely to set over Kerala on June 7, says IMD

Water evaporating from the ocean sustains precipitation on land. This ocean-to-land moisture transport leaves an imprint on sea surface salinity (SSS). Thus, the question arises of whether variations in SSS can provide insight into terrestrial precipitation. This study provides evidence that springtime SSS in the subtropical North Atlantic ocean can be used as a predictor of terrestrial precipitation during the subsequent summer monsoon in Africa.

Original Source

The Netherlands government has pledged 1,5 million euros to Zimbabwe as assistance towards fighting the effects of the El Nino-induced drought.

Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides1. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed.

In this study, the effects of cattle grazing intensity on soil nitrous oxide (N2O) fluxes were examined in the Hulunber meadow steppe of north-eastern China. Six stocking-rate treatments (0, 0.23, 0.34, 0.46, 0.69, and 0.92 AU ha−1) with three replicates were established, and observations were conducted from 2010 to 2014. Our results showed that substantial temporal fluctuations in N2O flux occurred amongst the different grazing intensities, with peak N2O fluxes after natural rainfall. Grazing had a long-term effect on the soil N2O flux in the grasslands.

The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment was carried out in the environs of Manaus, Brazil, in the central region of the Amazon basin for 2 years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other.

The present study examines the role of tropical cyclones in the enhancement of tropospheric ozone. The most significant and new observation reported is the increase in the upper-tropospheric (10–16 km) ozone by 20–50 ppbv, which has extended down to the middle (6–10 km) and lower troposphere ( <  6 km). The descent rate of enhanced ozone layer during the passage of tropical cyclone is 0.8–1 km day−1, which is three times that of a clear-sky day (non-convective).

In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia, and Croatia. Vb cyclones migrate from the Mediterranean, where they absorb warm and moist air, to the north, often causing flooding in central/eastern Europe. Extreme rainfall events are increasing on a global scale, and both thermodynamic and dynamical mechanisms play a role. Where thermodynamic aspects are generally well understood, there is large uncertainty associated with current and future changes in dynamics.

A U.S.

Pages