A P MITRA (1927-2007) In the early 1990s, the US Environmental Protection Agency had come out with a report incriminating Indian rice fields of emitting 38.6 million tonnes of methane per year and

Human activities are releasing tiny particles (aerosols) into the atmosphere. These human-made aerosols enhance scattering and absorption of solar radiation. They also produce brighter clouds that are less efficient at releasing precipitation. These in turn lead to large reductions in the amount of solar irradiance reaching Earth's surface, a corresponding increase in solar heating of the atmosphere, changes in the atmospheric temperature structure, suppression of rainfall, and less efficient removal of pollutants.

Every year, from December to April, anthropogenic haze spreads over most of the North Indian Ocean, and South and Southeast Asia. The Indian Ocean Experiment (INDOEX) documented this Indo-Asian haze at scales ranging from individual particles to its contribution to the regional climate forcing. This study integrates the multiplatform observations (satellites, aircraft, ships, surface stations, and balloons) with oneand four-dimensional models to derive the regional
aerosol forcing resulting from the direct, the semidirect and the two indirect effects.

Latitudinal distribution of radiative flux at different layers has been measured for the first time over the Indian Ocean from 15°N to 20°S during intensive field
phase of INDOEX 1999. Simultaneously measurements have been made over three Indian ground stations, viz. Delhi, Pune and Trivandrum. The basic feature of
radiative flux over the Indian Ocean, Delhi, Pune and Trivandrum is similar, i.e. the radiative flux increases with altitude and reaches a maximum value at 15 km

Measurements and models show that enhanced aerosol concentrations can augment cloud albedo not only by increasing total droplet cross-sectional area, but also by reducing precipitation and thereby increasing cloud water content and cloud coverage. Aerosol pollution is expected to exert a net cooling influence on the global climate through these conventional mechanisms. Here, we demonstrate an opposite mechanism through which aerosols can reduce

In the past decade there has been extensive research into tropical intraseasonal variability, one of the major components of the low frequency variability of the general atmospheric circulation. This paper briefly reviews the state-of-the-art in this research area: the nature of the Madden-Julian Oscillation, its relation to monsoonal and extratropical circulations, and the current theoretical understandings.

Original Source

The study of climate and climate change is hindered by a lack of information on the effect of clouds on the radiation balance of the earth, referred to as the cloud-radiative forcing. Quantitative estimates of the global distributions of cloud-radiative forcing have been obtained from the spaceborne Earth Radiation Budget Experiment (ERBE) launched in
1984.

Pages