For the first time this century, the average particulate matter exposure was higher for Indian citizens than that of Chinese people, a Greenpeace analysis of NASA satellite data on particulate matter has shown.

The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here the researchers present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations.

This study is an attempt to quantify the impact of climate change on the hydrology of Armur watershed in Godavari river basin, India. A GIS-based semi-distributed hydrological model, soil and water assessment tool (SWAT) has been employed to estimate the water balance components on the basis of unique combinations of slope, soil and land cover classes for the base line (1961–1990) and future climate scenarios (2071–2100). Sensitivity analysis of the model has been performed to identify the most critical parameters of the watershed.

Three decades of rapid economic development is causing severe and widespread PM2.5 (particulate matter ≤ 2.5 μm) pollution in China. However, research on the health impacts of PM2.5 exposure has been hindered by limited historical PM2.5 concentration data. The researchers estimated ambient PM2.5 concentrations from 2004 to 2013 in China at 0.1° resolution using the most recent satellite data and evaluated model performance with available ground observations.

Original Source

Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the impact on ecosystems, using plankton growth as a proxy.

We use the GLOMAP global aerosol model evaluated against observations of surface particulate matter (PM2.5) and aerosol optical depth (AOD) to better understand the impacts of biomass burning on tropical aerosol. To explore the uncertainty in emissions we use three satellite-derived fire emission datasets (GFED3, GFAS1 and FINN1) in the model, in which tropical fires account for 66–84 % of global particulate emissions from fire. The model underestimates PM2.5 concentrations where observations are available over South America and AOD over South America, Africa and Southeast Asia.

Using Landsat data at decadal interval (1980-2013), the glacier fluctuations (glacier area, equilibrium line altitude and specific mass balance) of nine benchmark glaciers in Kashmir Himalaya was estimated. The observed changes were related with topographic and climatic variables in order to understand their influence. From the data analysis, it was observed that the glaciers have shrunk by 17%, ELA has shifted upwards (80-300 m), and SMB shows variation in glacier mass loss from -0.77 to -0.16 m.w.e.

Greenhouse gas (GHG) emissions from agriculture comprise 10-12% of anthropocentric global emissions; and 76% of the agricultural emissions are generated in the developing world. Landscape GHG accounting is an effective way to efficiently develop baseline emissions and appropriate mitigation approaches.

China on Tuesday launched its most sophisticated observation satellite, Gaofen-4, as part of the country's high-definition (HD) earth observation project.

Assessing the impacts of land use and land cover change (LUCC) on regional climate is essential for understanding land–atmosphere interactions and for designing climate adaptation and mitigation strategies. Using the weather research and forecasting (WRF) model, we examined how different land use and land cover patterns affect regional climate in the agro-pastoral transitional zone of North China, whose environmental and socioeconomic conditions are sensitive to climate change.

Pages