Factors involved in the recent pause in the rise of global mean temperatures are examined seasonally. For 1999 to 2012, the hiatus in surface warming is mainly evident in the central and eastern Pacific. It is manifested as strong anomalous easterly trade winds, distinctive sea-level pressure patterns, and large rainfall anomalies in the Pacific, which resemble the Pacific Decadal Oscillation (PDO). These features are accompanied by upper tropospheric teleconnection wave patterns that extend throughout the Pacific, to polar regions, and into the Atlantic.

Climate policy and analysis often focus on energy production and consumption, but seldom consider how energy transportation infrastructure shapes energy systems. US President Obama has recently brought these issues to the fore, stating that he would only approve the Keystone XL pipeline, connecting Canadian oil sands with US refineries and ports, if it ‘does not significantly exacerbate the problem of carbon pollution’. Here, we apply a simple model to understand the implications of the pipeline for greenhouse gas emissions as a function of any resulting increase in oil sands production.

Future food production is highly vulnerable to both climate change and air pollution with implications for global food security. Climate change adaptation and ozone regulation have been identified as important strategies to safeguard food production5,6, but little is known about how climate and ozone pollution interact to affect agriculture, nor the relative e

Climate change has been projected to affect species distribution and future trends of local populations but projections of global population trends are rare. We analyse global population trends of the emperor penguin (Aptenodytes forsteri), an iconic Antarctic top predator, under the influence of sea ice conditions projected by coupled climate models assessed in the Intergovernmental Panel on Climate Change (IPCC) effort.

Tropical deforestation from developing countries, including Indonesia, contributes to emissions of greenhouse gases, principally carbon dioxide, the primary driver of global warming. Primary forest clearing also results in the loss of biodiversity due to the destruction of unique tropical forest habitats. Present understanding of forest change within Indonesia lacks consensus.

Plants in most biomes are thought to be living at their hydraulic limits, and alterations to precipitation patterns consistent with climate change trends are causing die-back in forests across the globe. However, within- and among-species variation in plant traits that promote persistence and adaptation under these new rainfall regimes may reduce mortality in these changing climates. Storage of non-structural carbohydrates (NSCs) is posited as an important trait for resistance and resilience of forests to climate-change-induced drought, but the underlying mechanisms remain unclear.

Poor air quality causes an estimated 2.6–4.4 million premature deaths per year. Hazardous conditions form when meteorological components allow the accumulation of pollutants in the near-surface atmosphere. Global-warming-driven changes to atmospheric circulation and the hydrological cycle are expected to alter the meteorological components that control pollutant build-up and dispersal, but the magnitude, direction, geographic footprint and public health impact of this alteration remain unclear.

Changes in climate variability are arguably more important for society and ecosystems than changes in mean climate, especially if they translate into altered extremes. There is a common perception and growing concern that human-induced climate change will lead to more volatile and extreme weather4. Certain types of extreme weather have increased in frequency and/or severity, in part because of a shift in mean climate but also because of changing variability.

The current generation has to set mitigation policy under uncertainty about the economic consequences of climate change. This uncertainty governs both the level of damages for a given level of warming, and the steepness of the increase in damage per warming degree. Our model of climate and the economy is a stochastic version of a model employed in assessing the US Social Cost of Carbon (DICE). We compute the optimal carbon taxes and CO2 abatement levels that maximize welfare from economic consumption over time under different risk states.

It is still possible to limit greenhouse gas emissions to avoid the 2 °C warming threshold for dangerous climate change. Here we explore the potential role of expanded wind energy deployment in climate change mitigation efforts. At present, most turbines are located in extra-tropical Asia, Europe and North America, where climate projections indicate continuity of the abundant wind resource during this century. Scenarios from international agencies indicate that this virtually carbon-free source could supply 10–31% of electricity worldwide by 2050.

Pages