Ship tracks provide an ideal test bed for studying aerosol–cloud interactions (ACIs) and for evaluating their representation in model parameterisations. Regional modelling
can be of particular use for this task, as this approach provides sufficient resolution to resolve the structure of the produced track including their meteorological environment

A pressing problem facing coastal decision makers is the conversion of "high level" but plausible climate change assessments into an effective basis for climate change adaptation at the local scale. Here, we describe a web-based, geospatial decision-support tool (DST) that provides an assessment of the potential flood risk for populated coastal lowlands arising from future sea-level rise, coastal storms and high river flows.

Disaster management aims to reduce catastrophic losses of disasters. Geographic information technologies support disaster management activities for effective and collaborative data management considering the complex nature of disasters. This study with an original conceptual approach aims to develop interoperable geographic data model and analysis tools to manage geographic data sets coming from different sources.

At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a 'collapse' of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services.

The city of Guwahati has a rich historical past and finds frequent mention in medieval historical sources and epics. From the pre-historic existence, the city has evolved through various stages of development and lately, the city has entered a phase of vigorous growth changing remarkably its fabric of settlement and the overall morphology of the urban landscape. Throughout the history of growth and development of Guwahati city, the river Brahmaputra has played the most important role in shaping the socio-economic life of its dwellers and the land use pattern of the city.

The world’s drylands are subject to desertification as a result of extended droughts, climate change, and human activities. Development in drylands depends on addressing degradation of the ecosystem, mainstreaming sustainable natural resources management, and building upon the existing adaptive capacities of communities and institutions. In this regard, recent scientific results aimed to promote sustainable development through action plans for combating desertification.

Watershed morphometric analysis is important for controlling floods and planning restoration actions. The present study is focused on the identification of suitable sites for locating water harvesting structures using morphometric analysis and multi-criteria based decision support system. The Hathmati watershed of river Hathmati at Idar taluka, Sabarkantha district, Gujarat is experiencing excessive runoff and soil erosion due to high intensity rainfall.

The global number of dam constructions has increased dramatically over the past six decades and is forecast to continue to rise, particularly in less industrialized regions. Identifying development pathways that can deliver the benefits of new infrastructure while also maintaining healthy and productive river systems is a great challenge that requires understanding the multifaceted impacts of dams at a range of scales.

The unprecedented floods of 2010 in Pakistan highlighted the necessity of a well-calibrated hydrological model of the Indus upper catchment for a comprehensive flood risk assessment. However, this modelling was an extremely challenging exercise because of the lack of hydrometeorological data, which are difficult to collect due to the geography of the catchment.

Policymakers, governments and aid agencies require operational environmental monitoring in support of evidence-based policy-making and resource deployment in crisis situations. For Africa, this is only feasible at sub-continental scale with a large network of automated meteorological stations, a large number of highly coordinated field observers or with satellite remote sensing. The challenge with satellite data lies in the derivation of meaningful environmental indicators.

Pages