Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat-use patterns is especially difficult for remote oceanic species.

Original Source

Evapotranspiration (ET) is a key process of the climate system because it links water, energy and carbon cycles. In this study we modified a Penman–Monteith based algorithm to estimate ET on the Tibetan Plateau at a 1 km spatial resolution for the period 2000–2010 using meteorological and satellite remote sensing data.

Original Source

While basic access to clean water is critical, another important issue is the affordability of water access for people around the globe. Prior international work has highlighted that a large proportion of consumers could not afford water if priced at full cost recovery levels.

Functional trait diversity is increasingly used to model future changes in community structure despite a poor understanding of community disassembly's effects on functional diversity. By tracking the functional diversity of the North American large mammal fauna through the End-Pleistocene megafaunal extinction and up to the present, I show that contrary to expectations, functionally unique species are no more likely to go extinct than functionally redundant species. This makes total functional richness loss no worse than expected given similar taxonomic richness declines.

Very little is known about the ancient origin of retroviruses, but owing to the discovery of their ancient endogenous viral counterparts, their early history is beginning to unfold. Here we report 36 lineages of basal amphibian and fish foamy-like endogenous retroviruses (FLERVs). Phylogenetic analyses reveal that ray-finned fish FLERVs exhibit an overall co-speciation pattern with their hosts, while amphibian FLERVs might not. We also observe several possible ancient viral cross-class transmissions, involving lobe-finned fish, shark and frog FLERVs.

Through investigation and analysis of geological conditions and mechanical parameters of the Taziping landslide, the finite volume method was adopted, and, the rheological model was adopted to simulate the landslide and avalanche entire mass movement process. The present paper adopted the GIS platform to simulate the mass movement process before and after treatment.

Models and physical reasoning predict that extreme precipitation will increase in a warmer climate due to increased atmospheric humidity. Observational tests using regression analysis have reported a puzzling variety of apparent scaling rates including strong rates in midlatitude locations but weak or negative rates in the tropics. Here we analyse daily extreme precipitation events in several Australian cities to show that temporary local cooling associated with extreme events and associated synoptic conditions reduces these apparent scaling rates, especially in warmer climatic conditions.

To reduce greenhouse gas emissions in the coming decades, many governments will have to reform their energy policies. These policies are difficult to measure with any precision. As a result, it is unclear whether progress has been made towards important energy policy reforms, such as reducing fossil fuel subsidies. We use new data to measure net taxes and subsidies for gasoline in almost all countries at the monthly level and find evidence of both progress and backsliding. From 2003 to 2015, gasoline taxes rose in 83 states but fell in 46 states.

Physiological responses to temperature are known to be a major determinant of species distributions and can dictate the sensitivity of populations to global warming. In contrast, little is known about how other major global change drivers, such as ocean acidification (OA), will shape species distributions in the future. Here, by integrating population genetics with experimental data for growth and mineralization, physiology and metabolomics, we demonstrate that the sensitivity of populations of the gastropod Littorina littorea to future OA is shaped by regional adaptation.

Islands are ideal systems to model temporal changes in biodiversity and reveal the influence of humans on natural communities. Although theory predicts biodiversity on islands tends towards an equilibrium value, the recent extinction of large proportions of island biotas complicates testing this model. The well-preserved subfossil record of Caribbean bats—involving multiple insular radiations—provides a rare opportunity to model diversity dynamics in an insular community.

Pages