Plants with rising atmospheric carbon dioxide (CO2) level in the environment may change their nutrient demands to sustain growth. The mechanisms concerning iron dynamics in plants under the interactive effect of salinity and elevated CO2 are poorly understood. This study examines the effects of long-term as well as short-term growth at elevated CO2 and salt on iron deficiency-associated molecular responses of Porteresia coarctata through analysing the transcript expression of iron deficiency-responsive genes in the leaf tissue.

This study provides evidence of substantial increases in atmospheric ammonia (NH3) concentrations (14 year) over several of the worlds major agricultural regions, using recently available retrievals from the Atmospheric Infrared Sounder (AIRS) aboard NASA’s Aqua satellite. The main sources of atmospheric NH3 are farming and animal husbandry involving reactive nitrogen ultimately derived from fertilizer use; rates of emission are also sensitive to climate change. Significant increasing trends are seen over the U.S. (2.61% yr

A simultaneous analysis of 13 years of remotely sensed data of land cover, fires, precipitation, and aerosols from the MODIS, TRMM, and MISR satellites and the AERONET network over Southeast Asia is performed, leading to a set of robust relationships between land-use change and fire being found on inter-annual and intra-annual scales over Southeast Asia, reflecting the heavy amounts of anthropogenic influence over land-use change and fires in this region of the world.