Epidemiological studies investigating the role of fine particulate matter (PM2.5; aerodynamic diameter <2.5 lm) in triggering acute coronary events, including out-of-hospital cardiac arrests and ischemic heart disease (IHD), during wildfires have been inconclusive. The researchers examined the associations of out-of-hospital cardiac arrests, IHD, acute myocardial infarction, and angina (hospital admissions and emergency department attendance) with PM2.5 concentrations during the 2006–2007 wildfires in Victoria, Australia, using a time-stratified case-crossover study design.

Rapid build-up of greenhouse gases is expected to increase Earth’s mean surface temperature, with unclear effects on temperature variability. This makes understanding the direct effects of a changing climate on human health more urgent. However, the effects of prolonged exposures to variable temperatures, which are important for understanding the public health burden, are unclear.

After several tsunami events with disastrous consequences around the world, coastal countries have realized the need to be prepared to minimize human mortality and damage to coastal infrastructures, livelihoods and resources. The international scientific community is striving to develop and validate methodologies for tsunami hazard and vulnerability and risk assessments. The vulnerability of coastal communities is usually assessed through the definition of sets of indicators based on previous literature and/or post-tsunami reports, as well as on the available data for the study site.

Up-to-date evidence about levels and trends in disease and injury incidence, prevalence, and years lived with disability (YLDs) is an essential input into global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013), we estimated these quantities for acute and chronic diseases and injuries for 188 countries between 1990 and 2013.

To our knowledge, a systematic comparison of predictors of mortality in middle-aged to elderly individuals has not yet been done. We investigated predictors of mortality in UK Biobank participants during a 5 year period. We aimed to investigate the associations between most of the available measurements and 5 year all-cause and cause-specific mortality, and to develop and validate a prediction score for 5 year mortality using only self-reported information.

Between now and 2030, every country will experience population ageing—a trend that is both pronounced and historically unprecedented. Over the past six decades, countries of the world had experienced only a slight increase in the share of people aged 60 years and older, from 8% to 10%. But in the next four decades, this group is expected to rise to 22% of the total population—a jump from 800 million to 2 billion people. Evidence suggests that cohorts entering older age now are healthier than previous ones.

23% of the total global burden of disease is attributable to disorders in people aged 60 years and older. Although the proportion of the burden arising from older people (≥60 years) is highest in high-income regions, disability-adjusted life years (DALYs) per head are 40% higher in low-income and middle-income regions, accounted for by the increased burden per head of population arising from cardiovascular diseases, and sensory, respiratory, and infectious disorders.

Heat-wave frequency, intensity, and duration are increasing with global climate change. The association between heat and mortality in the elderly is well documented, but less is known regarding associations with hospital admissions. The goal of the study was to determine associations between moderate and extreme heat, heat waves, and hospital admissions for nonaccidental causes among Medicare beneficiaries ≥ 65 years of age in 114 cities across five U.S. climate zones.

Epidemiological studies have shown adverse effects of short-term exposure to air pollution on respiratory disease outcomes; however, few studies examined this association on an hourly time scale. We evaluated the associations between hourly changes in air pollution and the risk of respiratory disease in the elderly, using the time of the emergency call as the disease onset for each case.

The paper assesses the impact of overall inequality, as well as inequality among the poor and among the rich, on the growth rates along various percentiles of the income distribution. The analysis uses micro-census data from U.S. states covering the period from 1960 to 2010.

Pages