Both plants and animals make decisions in response to the environment to maximize their fitness. Plants use dormancy in seeds to move through time and space, and timing of the transition to germination is influenced by external cues, including temperature. Here, we report the presence of a decision-making center within the root tip of dormant seeds and demonstrate that it shares a similar configuration as some systems within the human brain.

A likely consequence of global warming will be the redistribution of Earth’s rain belts, affecting water availability for many of Earth’s inhabitants. We consider three ways in which planetary warming might influence the global distribution of precipitation. The first possibility is that rainfall in the tropics will increase and that the subtropics and mid-latitudes will become more arid. A second possibility is that Earth’s thermal equator, around which the planet’s rain belts and dry zones are organized, will migrate northward.

Drought management frameworks are dependent on methods for monitoring and prediction, but quantifying the hazard alone is arguably not sufficient; the negative consequences that may arise from a lack of precipitation must also be predicted if droughts are to be better managed. However, the link between drought intensity, expressed by some hydro-meteorological indicator, and the occurrence of drought impacts has only recently begun to be addressed. One challenge is the paucity of information on ecological and socio-economic consequences of drought.

Soil degradation is a major threat for farmers of semi-arid north-central Namibia. Soil conservation practices can be promoted by the development of soil quality (SQ) evaluation toolboxes that provide ways to evaluate soil degradation. However, such toolboxes must be adapted to local conditions to reach farmers. Based on qualitative (interviews and soil descriptions) and quantitative (laboratory analyses) data, we developed a set of SQ indicators relevant for our study area that integrate farmers' field experiences (FFE) and technical knowledge.

Climate change impacts can be especially large in cities1, 2. Several large cities are taking climate change into account in long-term strategies3, 4, for which it is important to have information on the costs and benefits of adaptation5. Studies on climate change impacts in cities mostly focus on a limited set of countries and risks, for example sea-level rise, health and water resources6. Most of these studies are qualitative, except for the costs of sea-level rise in cities7, 8.

Cash-based interventions (CBIs), offer an interesting opportunity to prevent increases in wasting in humanitarian aid settings. However, questions remain as to the impact of CBIs on nutritional status and, therefore, how to incorporate them into emergency programmes to maximise their success in terms of improved nutritional outcomes. This study evaluated the effects of three different CBI modalities on nutritional outcomes in children under 5 y of age at 6 mo and at 1 y.

Ecosystem carbon carrying capacity (CCC) is determined by prevailing climate and natural disturbance regimes, conditions that are projected to change significantly. The interaction of changing climate and its effects on disturbance regimes is expected to affect forest regeneration and growth, which may diminish forest carbon (C) stocks and uptake. We modeled landscape C dynamics over 590 years along the latitudinal gradient of the U.S. Sierra Nevada Mountains under climate and area burned by large wildfires projected by late 21st century.

Heavy rainfall and hailstorm events occurred in major wheat-growing areas of India during February and March 2015 causing large-scale damages to the crop. An attempt was made to assess the impact of hailstorms in the states of Punjab, Haryana, Uttar Pradesh (UP), Rajasthan and Madhya Pradesh (MP) using remote sensing data.

Original Source

Iron deficiency reduces capacity for physical activity, lowers IQ, and increases maternal and child mortality, impacting roughly a billion people worldwide. Recent studies have shown that certain highly consumed crops — C3 grains (e.g., wheat, rice, barley), legumes and maize — have lower iron concentrations of 4-10% when grown under increased atmospheric CO2 concentrations (550 ppm).

Impacts of elevated temperature and carbon dioxide (CO2) enrichment on rice were assessed by carrying out an experiment with four dates of planting (1 June and 15 June, 1 and 15 July) during 2014 under two different environmental conditions, viz. ambient and modified (climate control chamber) with +4C compared to the ambient temperature and CO2 enrichment of 650 ppm.

Pages